Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability.

نویسندگان

  • Elena Kuznetsova
  • Seth T Rittenhouse
  • H R Sadeghpour
  • Susanne F Yelin
چکیده

We study the possibility to use interaction between a polar molecule in the ground electronic and vibrational state and a Rydberg atom to construct two-qubit gates between molecular qubits and to coherently control molecular states. A polar molecule within the electron orbit in a Rydberg atom can either shift the Rydberg state, or form a Rydberg molecule. Both the atomic shift and the Rydberg molecule states depend on the initial internal state of the polar molecule, resulting in molecular state dependent van der Waals or dipole-dipole interaction between Rydberg atoms. Rydberg atoms mediated interaction between polar molecules can be enhanced up to 10(3) times. We describe how the coupling between a polar molecule and a Rydberg atom can be applied to coherently control molecular states, and specifically, to individually address molecules in an optical lattice, and to non-destructively readout molecular qubits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From molecular spectra to a density shift in dense Rydberg gases

In Rydberg atoms, at least one electron is excited to a state with a high principal quantum number. In an ultracold environment, this low-energy electron can scatter off a ground state atom allowing for the formation of a Rydberg molecule consisting of one Rydberg atom and several ground state atoms. Here we investigate those Rydberg molecules created by photoassociation for the spherically sym...

متن کامل

ar X iv : 0 90 9 . 47 77 v 1 [ qu an t - ph ] 2 5 Se p 20 09 Quantum information with Rydberg atoms

Rydberg atoms with principal quantum number n ≫ 1 have exaggerated atomic properties including dipole-dipole interactions that scale as n 4 and radiative lifetimes that scale as n 3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong, long-range interaction that can be coherently turned on and o...

متن کامل

Quantum information with Rydberg atoms

Rydberg atoms with principal quantum number n 1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction that can be coherently turned on and off is...

متن کامل

Observation of Rydberg blockade between two atoms

Blockade interactions whereby a single particle prevents the flow or excitation of other particles provide a mechanism for control of quantum states, including entanglement of two or more particles. Blockade has been observed for electrons1–3, photons4 and cold atoms5. Furthermore, dipolar interactions between highly excited atoms have been proposed as a mechanism for ‘Rydberg blockade’6,7, whi...

متن کامل

The AIM, NBO thermodynamic, and quantum study of the interaction nitramide molecule with pristine, B, As and B&As doped of AlNNTs

In this work, by using density functional theory, the adsorption of Nitramide (NH2NO2) molecule on the surface of pristine, B, As and B&As doped (4,4) armchair aluminum nitride nanotube (AlNNTs) is investigated. From optimized structures the adsorption energy, deformation energy, natural bond orbital (NBO), atom in molecule (AIM), quantum parameters, reduced density gradient (RDG) and molecular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 38  شماره 

صفحات  -

تاریخ انتشار 2011